Chapter 14 CHEMICAL EQUILIBRIUM

These Notes are to SUPPLIMENT the Text, They do NOT Replace reading the Text Material. Additional material that is in the Text will be on your tests! To get the most information, READ THE CHAPTER prior to the Lecture, bring in these lecture notes and make comments on these notes. These notes alone are NOT enough to pass any test!

The author is providing these notes as an addition to the students reading the text book and listening to the lecture. Although the author tries to keep errors to a minimum, the student is responsible for correcting any errors in these notes.

Chemical Equilibrium - Reversible Reactions

Coal Gasification

$$
\mathrm{C}_{\text {coal }}+\mathrm{H}_{2} \mathrm{O}_{\text {steam }} \rightarrow \mathrm{CO}+\mathrm{H}_{2} \quad \text { Starting Material for next reaction }
$$

Catalytic Methanation (gas phase) $\mathrm{CO}+3 \mathrm{H}_{2} \rightarrow \mathrm{Cat} \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \quad$ To form Methane
Steam Reforming

$$
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+3 \mathrm{H}_{2}
$$

These really establish a Dynamic Equilibrium Reaction: Both the forward and reverse reactions occur at the same rate or speed.

$$
\mathrm{CO}+3 \mathrm{H}_{2} \leftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Chemical Equilibrium is the state reached by a reaction mixture when the rates of the forward and reverse reaction have become equal. Note: Both the forward and reverse reactions continue to occur, but they occur at the same rate. This is a Dynamic Process.

Example 14.1 Start with 1.000 mol of CO and 3.000 mol of Hydrogen. At equilibrium the mixture has 0.387 moles of water. What else is in the mixture?

$$
\mathrm{CO}+3 \mathrm{H}_{2} \longleftrightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

Amount	CO	+	$\underline{\mathbf{H}_{2}} \longleftrightarrow \rightarrow$	CH_{4}	+	$\underline{H}_{2} \underline{O}$
Starting	1.000		3.000	0		0
Change	-x		- 3 x	+x		+x
Equilibrium	1.000		3.000-3x	X		$\mathrm{x}=0.387$
$\mathbf{C O}=1.00$	- x	$=$	1.000-0.387		= 0.613 moles	
$\mathbf{H}_{2} \mathrm{O}=3.00$	-3x	$=$	$3.000-3 * 0.387$		$=\mathbf{1 . 8 3 9}$ moles	
$\mathrm{CH}_{4}=\mathrm{x}$						7 moles

As A Check: The reaction starts with 1.000 mole of $\mathrm{CO}, 3.000$ mole of $\mathrm{H}_{2}=4$ moles of reactants. This would generate 1 mole of CH_{4} and 1 mole of $\mathrm{H}_{2} \mathrm{O}$ or 2 moles of products. We actually obtained 0.387 mole of CH_{4} and 0.387 mole of $\mathrm{H}_{2} \mathrm{O}$ or 0.774 moles of product. So this reaction is an equilibrium reaction and does not go to completion!

Exercise 14.1 Start with 1.00 mol of CO and 1.00 mol of water. At equilibrium the mixture has 0.43 mol of hydrogen. What else is in the mixture?

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \longleftrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}
$$

Concept Check 14.1 A and B react to form C. When A decreases by x moles, C increases by x moles. When B decreases by x moles, C increases by 2 x moles. What is the chemical equation?

Class do - possible test question!

Figure 14.3: Graph shows the Moles of H_{2} and CO as they decrease with time and CH_{4} as it starts at zero and then increases to equilibrium. B shows the change in rates of reaction. The forward reaction is fast at first, the reverse is zero at first.

The Equilibrium Constant:
Equilibrium Constant Expression:

$$
\mathrm{aA}+\mathrm{bB} \leftarrow \rightarrow \mathrm{cC}+\mathrm{dD}
$$

Equilibrium Constant $\quad K_{c}=\frac{[\mathbf{C}]^{c}[\mathbf{D}]^{d}}{[\mathbf{A}]^{\mathrm{a}}[\mathbf{B}]^{\mathrm{b}}} \quad[]=$ Molar Conc $=$ moles $/ \mathbf{L}=$ Molarity $=\mathbf{M}$
Law of Mass Action: the values of an equilibrium constant expression K_{c} are constant of a particular reaction at a given temperature no matter what equilibrium concentrations are substituted.

Example 14.2 Write the Equilibrium Constant Expressions for the following:

$$
\begin{array}{ll}
\mathrm{CO}+3 \mathrm{H}_{2} \leftarrow \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} & \mathrm{~K}_{\mathrm{c}}=\left[\mathrm{CH}_{4}\right]^{1}\left[\mathrm{H}_{2} \mathrm{O}\right]^{1} /[\mathrm{CO}]^{1}\left[\mathrm{H}_{2}\right]^{3} \\
\mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow \mathrm{CO}+3 \mathrm{H}_{2} & \mathrm{~K}_{\mathrm{c}}=[\mathrm{CO}]^{1}\left[\mathrm{H}_{2}\right]^{3} /\left[\mathrm{CH}_{4}\right]^{1}\left[\mathrm{H}_{2} \mathrm{O}\right]^{1} \\
\mathrm{~N}_{2}+3 \mathrm{H}_{2} \leftarrow \rightarrow 2 \mathrm{NH}_{3} & \mathrm{~K}_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right]^{2} /\left[\mathrm{N}_{2}\right]^{1}\left[\mathrm{H}_{2}\right]^{3} \\
1 / 2 \mathrm{~N}_{2}+3 / 2 \mathrm{H}_{2} \leftarrow \rightarrow \mathrm{NH}_{3} & \mathrm{~K}_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right]^{1} /\left[\mathrm{N}_{2}\right]^{1 / 2}\left[\mathrm{H}_{2}\right]^{3 / 2}
\end{array}
$$

Exercise 14.2 Write the Equilibrium Constant Expressions for the following:

$$
\begin{aligned}
& 2 \mathrm{NO}_{2}+7 \mathrm{H}_{2} \leftarrow \rightarrow 2 \mathrm{NH}_{3}+4 \mathrm{H}_{2} \mathrm{O} \\
& \mathrm{NO}_{2}+7 / 2 \mathrm{H}_{2} \leftarrow \rightarrow \mathrm{NH}_{3}+2 \mathrm{H}_{2} \mathrm{O} \quad \text { Class do - possible test question! }
\end{aligned}
$$

Equilibrium: $\mathbf{N}_{\mathbf{2}} \mathbf{O}_{\mathbf{4}} \leftarrow \mathbf{k}_{\mathbf{R}} \quad \mathbf{k}_{\mathbf{F}} \rightarrow \mathbf{2} \mathbf{N O}_{\mathbf{2}} \quad \mathrm{k}_{\mathrm{F}}=$ rate of forward reaction, $\mathrm{k}_{\mathrm{R}}=$ rate of reverse
At the start, there is only $\mathrm{N}_{2} \mathrm{O}_{4}$. As the reaction proceeds, NO_{2} is formed and reverse reaction starts.
Eventually, the rate of the forward reaction equals the rate of the reverse reaction. This is called equilibrium.

$$
\mathrm{K}_{\mathrm{c}}=\frac{\mathrm{k}_{\mathrm{f}}}{\mathrm{k}_{\mathrm{r}}}=\frac{\left[\mathrm{NO}_{2}\right]^{2}}{\left[\mathrm{~N}_{2} \underline{\mathrm{O}}_{4}\right]}
$$

At Equilibrium: \quad Rate of forward reaction $*$ Concentration of reactants $=$ Rate of reverse reaction * Concentration of products

$$
\mathrm{k}_{\mathrm{F}} *\left[\mathrm{~N}_{2} \mathrm{O}_{4}\right]=\mathrm{k}_{\mathrm{R}}\left[\mathrm{NO}_{2}\right]^{2}
$$

Experiment $1 \quad \mathbf{C O}+\mathbf{3} \mathbf{H}_{\mathbf{2}} \longleftrightarrow \mathbf{C H}_{\mathbf{4}}+\mathbf{H}_{\mathbf{2}} \mathbf{O} \quad$ What is $\mathrm{K}_{\mathrm{c}} \quad$ in a 10.00 Liter Reactor
$\mathrm{CO}=0.613 \mathrm{~mol} \quad \mathrm{H}_{2}=1.839 \mathrm{~mol} \quad \mathrm{CH}_{4}=0.387 \mathrm{~mol} \quad \mathrm{H}_{2} \mathrm{O}=0.387 \mathrm{~mol}$
$\mathrm{K}_{\mathrm{c}}=\frac{[\mathbf{C}]^{\mathbf{c}}[\mathbf{D}]^{\mathrm{d}}}{[\mathbf{A}]^{\mathrm{a}}[\mathbf{B}]^{\mathbf{b}}}=\frac{\left[\mathrm{CH}_{4}\right]^{1}\left[\mathrm{H}_{2} \underline{\mathrm{O}}\right]^{1}}{[\mathrm{CO}]^{1}\left[\mathrm{H}_{2}\right]^{3}}=\frac{[0.387 \mathrm{~mol} / 10.00 \mathrm{~L}][0.387 \mathrm{~mol} / 10.00 \mathrm{Ll}]^{3}}{[0.613 \mathrm{~mol} / 10.00 \mathrm{~L}][1.839 \mathrm{~mol} / 10.00 \mathrm{~L}]^{3}}=\mathbf{3 . 9 3}$
Experiment 2
in a 10.00 Liter Reactor
$\mathrm{CO}=1.522 \mathrm{~mol} \quad \mathrm{H}_{2}=1.566 \mathrm{~mol} \quad \mathrm{CH}_{4}=0.478 \mathrm{~mol} \quad \mathrm{H}_{2} \mathrm{O}=0.478 \mathrm{~mol}$

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}}= & \frac{[\mathbf{C}]^{\mathrm{c}}[\mathbf{D}]^{\mathrm{d}}}{[\mathbf{A}]^{\mathrm{a}}[\mathbf{B}]^{\mathrm{b}}}=\frac{\left[\mathrm{CH}_{4}\right]^{1}\left[\mathrm{H}_{2} \mathrm{O}\right]^{1}}{[\mathrm{CO}]^{1}\left[\mathrm{H}_{2}\right]^{3}}=\frac{[0.478 \mathrm{~mol} / 10.00 \mathrm{~L}][0.478 \mathrm{~mol} / 10.00 \mathrm{~L}]}{[1.522 \mathrm{~mol} / 10.00 \mathrm{~L}][1.566 \mathrm{~mol} / 10.00 \mathrm{~L}]^{3}}= \\
& =\frac{(0.0478) *(0.0478)}{(0.0613) *(0.1839)^{3}}=\mathbf{3 . 9 1}
\end{aligned}
$$

Note above, the different concentrations of components, but K_{c} are equivalent!

Exercise 14.3 1.00 mol of CO and 1.00 mol of $\mathrm{H}_{2} \mathrm{O}$ react at $1000^{\circ} \mathrm{C}$ and at equilibrium in a 10.0 L reactor produces 0.57 mol of $\mathrm{CO}, 0.57 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}, 0.43 \mathrm{~mol} \mathrm{CO}_{2}$ and $0.43 \mathrm{~mol} \mathrm{H}_{2}$. Write the balanced equilibrium chemical equation and calculate the value of K_{c} ? Class do - possible test question!

Example 14.3 $\quad \mathrm{HI}$ decomposes by: $2 \mathrm{HI} \leftarrow \rightarrow \mathrm{H}_{2}+\mathrm{I}_{2}$
The amount of I_{2} is determined by measuring is absorption in the Visible Spectrum. Starting with 4.00 mol of HI in a 5.00 L container at $458^{\circ} \mathrm{C}$. At equilibrium there was 0.442 mol of I_{2}. What is Kc ?

$\mathrm{HI}=4.00$ mole $/ 5.00 \mathrm{~L}=0.800 \mathrm{Molar}(\mathrm{M})$			$\mathrm{I}_{2}=0.442$ mole / 5.00 L = 0.0884 Molar (M)	
	2 HI	$\leftarrow \rightarrow$	$\mathrm{H}_{2}+$	\mathbf{I}_{2}
Starting	0.800 M		0	0
Change	- 2 x		x	x
Equilibrium	0.800-2x		x	$\mathrm{x}=0.0884$
Answer	0.623 M		0.0884 M	0.0884 M

$$
\mathbf{K}_{\mathbf{c}}=\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right] /[\mathrm{HI}]^{2}=(0.0884 \mathrm{M})(0.0884 \mathrm{M}) /(0.623 \mathrm{M})^{2}=\mathbf{0 . 0 2 0 1}
$$

Exercise $14.4 \quad \mathrm{H}_{2} \mathrm{~S}$ decomposes by: $2 \mathrm{H}_{2} \mathrm{~S} \leftarrow \rightarrow 2 \mathrm{H}_{2}+\mathrm{S}_{2} \quad$ Starting with 0.100 mol of $\mathrm{H}_{2} \mathrm{~S}$ in a 10.0 L container at $1132{ }^{\circ} \mathrm{C}$ at equilibrium gave 0.0285 mol of H_{2}. What is K_{c} ? Class do, possible test quest!

Partial Pressure Equilibrium Constant $\mathbf{K}_{\mathbf{p}} \quad$ Remember PV $=\mathrm{nRT}$?
Well, you can do equilibrium reactions based on partial pressure instead of concentration. At a higher pressure, there is a higher concentration of reactants:

$$
\mathrm{CO}+3 \mathrm{H}_{2} \leftarrow \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O}
$$

$$
\mathbf{K p}=\frac{\mathbf{P}_{\mathrm{CH} 4} * \mathbf{P}_{\mathrm{H} 2 \mathrm{O}}}{\mathbf{P}_{\mathrm{CO}} * \mathbf{P}_{\mathrm{H} 2}}
$$

$$
K p=K c(R T)^{\Delta n}
$$

where $\Delta \mathrm{n}=$ the sum of the coefficients of gas products minus the sum of coefficients of gas reactants.
For above reaction $\Delta \mathrm{n}=2-4=-2$. From Experiment 1 and 2 above $\mathbf{K}_{\mathbf{c}}=\mathbf{3 . 9 2}$

$$
\mathbf{K p}=\mathbf{K}_{\mathbf{c}}(\mathbf{R T})^{\Delta \mathbf{n}}=3.92 *\left(0.0821 \mathrm{~L} \text { atm } / \mathrm{Mol}^{\circ} \mathrm{K} * 1200^{\circ} \mathrm{K}\right)^{-2}=\mathbf{4 . 0 4} \times 1 \mathbf{0}^{-4}
$$

Exercise 14.5 $\quad \mathrm{PCl}_{5} \leftarrow \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2} \quad \mathrm{~K}_{\mathrm{c}}=3.26 \times 10^{-2}$ at $191{ }^{\circ} \mathrm{C}$. What is K_{p} ?

Class do possible test quest

Concept Check 14.2 For the following reactions with the given equilibrium constants
$\mathrm{A} \leqslant \rightarrow \mathrm{B} \quad \mathrm{K}=2$
$X \leftarrow \rightarrow 2 Y \quad K=6$
$2 \mathrm{C} \leqslant \rightarrow \mathrm{D} \quad \mathrm{K}=1$

Match each reaction above with the picture below and identify the color to reactant / product.

To answer this question, find the relationship between the two species present using the equilibrium constant expression and its value.

For the first reaction: $\quad \mathrm{A}(\mathrm{g}) \leftarrow \rightarrow \mathrm{B}(\mathrm{g}), \quad$ with $\mathrm{K}=2$, this becomes
$K=2=\frac{[B]}{[A]} \quad$ This reduces to $[B]=2[A]$. This corresponds to the container that has twice as many balls of one color than the other color, namely container IV. Here, the blue molecules are B (eight of them), and the red molecules are A (four of them).

For the second reaction, $\quad \mathrm{X}(\mathrm{g}) \leftarrow \rightarrow 2 \mathrm{Y}(\mathrm{g}), \quad$ with $\mathrm{K}=6$, this becomes $\mathrm{K}=6=\frac{[\mathrm{Y}]^{2}}{[\mathrm{X}]} \quad$ This reduces to $[\mathrm{Y}]^{2}=6[\mathrm{X}]$. This corresponds to container I, where there are six of each color molecule. Since there are the same numbers of each molecule, you cannot determine which color corresponds to which molecule.

For the third reaction,

$$
2 \mathrm{C}(\mathrm{~g}) \leftarrow \rightarrow \mathrm{D}(\mathrm{~g}) \text {, with } \mathrm{K}=1 \text {, this becomes }
$$

$\mathrm{K}=1=\frac{[\mathrm{D}]}{[\mathrm{C}]^{2}} \quad$ This reduces to $[\mathrm{C}]^{2}=[\mathrm{D}]$. This corresponds to container II. The red balls (nine of them) correspond to molecule D , and the blue balls (three of them) correspond to molecule C .

Heterogeneous / Homogeneous Equilibria:

Homogeneous Equilibrium involves reactants and products in a single phase.
e.g Cat Methanation above.

Heterogeneous Equilibrium involves reactants and products in more than one phase.
e.g. Iron and steam involves solid and gas phases: $3 \mathrm{Fe}_{(\mathrm{s})}+4 \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \leftarrow \rightarrow \mathrm{Fe}^{(\mathrm{g}} \mathrm{O}_{4(\mathrm{~s})}+4 \mathrm{H}_{2(\mathrm{~g})}$

Equilibrium expressions omit pure solids and liquids [sometimes]: $\mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2}\right]^{4} /\left[\mathrm{H}_{2} \mathrm{O}\right]^{4}$
Example 14.4 Calcium Oxide is prepared from heating Calcium Carbonate:
$\mathrm{CaCO}_{3(\mathrm{~s})} \leftarrow \rightarrow \mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})} \quad$ Write $\mathrm{K}_{\mathrm{c}} ? \quad \mathrm{~K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right]$
Write K_{c} for liquid water in equilibrium with water vapor: $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \leftarrow \rightarrow \mathrm{H}_{2} \mathrm{O}_{(\mathrm{g})} \quad \mathrm{K}_{\mathrm{c}}=\left[\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right]$
Exercise 14.6 Nickel is purified by passing CO over it and condensing the Nickel Carbonyl:

$$
\mathrm{Ni}_{(\mathrm{s})}+4 \mathrm{CO}_{(\mathrm{g})} \leftarrow \rightarrow \mathrm{Ni}(\mathrm{CO})_{4(\mathrm{~g})} \quad \text { Write } \mathrm{K}_{\mathrm{c}} \text { ? Class do, possible test quest }
$$

Using the Equilibrium Constant:

1. Qualitative interpreting the equilibrium contestant

If K_{c} or K_{p} is large, the products are favored: Reactants $\leftarrow \rightarrow$ Products $\quad \mathbf{K}=\underset{\text { [Reactants] }}{\text { [Products] }}$
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftarrow \rightarrow 2 \mathrm{NH}_{3} \quad$ at $25^{\circ} \mathrm{C}, \mathrm{K}_{\mathrm{c}}=4.1 \times 10^{8}$. The products are 4.1×10^{8} more concentrated.
$\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}$
If K_{c} or K_{p} is small, the reactants are favored:

$$
\mathrm{N}_{2}+\mathrm{O}_{2} \leftarrow \rightarrow 2 \mathrm{NO} \quad \text { at } 25^{\circ} \mathrm{C}, \mathrm{~K}_{\mathrm{c}}=4.6 \times 10^{-31}=\frac{[\mathrm{NO}]^{2}}{\left[\mathrm{~N}_{2}\right] *\left[\mathrm{O}_{2}\right]}
$$

Assume [N] and $[\mathrm{O}]=1.0 \mathrm{M} . \quad[\mathrm{NO}]^{2}=4.6 \times 10^{-31} * 1.0 * 1.0 \quad[\mathrm{NO}]=6.8 \times 10^{-16} \mathrm{M}$
So the concentration of the product is very small compared to that of the reactants.

Does the equilibrium mixture contain mostly reactants or products?
If $[\mathrm{NO}]=\left[\mathrm{O}_{2}\right]=2.0 \times 10^{6} \mathrm{M}$, what is the concentration of NO_{2} ?

2. Predicting the direction of the reaction

$\mathrm{CO}+3 \mathrm{H}_{2} \quad \leftarrow \rightarrow \mathrm{CH}_{4}+\quad \mathrm{H}_{2} \mathrm{O}$ $0.0200 \mathrm{M} \quad 0.0200 \mathrm{M} \quad 0.00100 \mathrm{M} \quad 0.00100 \mathrm{M}$
at $1200{ }^{\circ} \mathrm{K}$,
gas passes over a catalyst.

Reaction Quotient $\mathbf{Q}_{\mathbf{c}}$ is an expression that has the same form as the equilibrium constant expression, but whose concentration values are not necessary those at equilibrium. This is an example reaction where the gases are directed to pass over a catalyst and then removed from the area. This is NOT a reaction at equilibrium.

$$
\mathbf{Q}_{\mathbf{c}}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}=\frac{[0.00100] *[0.00100]}{[0.0200] *[0.0200]^{3}}=6.25
$$

In Experiment 1 and 2 above, for the equilibrium reaction, $K_{c}=3.92$. So to go from this gas phase over a cat to an equilibrium state, the equilibrium constant must go from 6.25 down to 3.92. The reaction would then favor going to the left.

For the general reaction $\mathrm{aA}+\mathrm{bB} \leftarrow \rightarrow \mathrm{cC}+\mathrm{dD} \quad$ where $\mathrm{Q}_{\mathrm{c}}=[\mathrm{C}]^{\mathrm{c}}[\mathrm{D}]^{\mathrm{d}} /[\mathrm{A}]^{\mathrm{a}}[\mathrm{B}]^{\mathrm{b}}$

If $Q_{c}>K_{c} \quad$ the reaction will go to the left
 If $Q_{c}<K_{c} \quad$ the reaction will go to the right
 If $\mathbf{Q}_{\mathbf{c}}=\mathbf{K}_{\mathbf{c}} \quad$ the reaction is already at equilibrium

$\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftarrow \rightarrow 2 \mathrm{NH}_{3}$
When the mixture goes to equilibrium, will more ammonia form or disappear?

$$
\begin{aligned}
& \mathrm{N}_{2}=1.00 \text { mole } / 50.0 \mathrm{~L}=0.0200 \mathrm{M} \\
& \mathrm{NH}_{3}=0.500 \text { mole } / 50.0 \mathrm{~L}=0.0100 \mathrm{M} \\
& \mathrm{Q}_{\mathrm{c}}=\frac{\left[\mathrm{NH}_{3}\right]^{2}}{\left[\mathrm{~N}_{2}\right]\left[\mathrm{H}_{2}\right]^{3}}=3.00 \text { mole } / 50.0 \mathrm{~L}=0.0600 \mathrm{M} \\
& (0.0200 \mathrm{M})(0.0600 \mathrm{M})^{3}
\end{aligned}=23.1 \mathrm{(0.0100M)}^{2}=
$$

$\mathrm{Q}_{\mathrm{c}}=23.1$ and $\mathrm{K}_{\mathrm{c}}=0.500$, so Q_{c} is greater, so the reaction will go to the left and ammonia will disappear.
Concept Check 14.3 $\quad \mathrm{CO}+2 \mathrm{H}_{2} \leftarrow \rightarrow \mathrm{CH}_{3} \mathrm{OH}$
At equilibrium the volume is compressed so the concentrations of all substances initially double. What will happen when equilibrium is attained?

3. Calculating the equilibrium concentration

$\begin{array}{lllll}\text { Example 14.6 } & \mathrm{CO}+ & 3 \mathrm{H}_{2} & \leftarrow \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} & \mathrm{K}_{\mathrm{c}}=3.92 \text { at } 1200{ }^{\circ} \mathrm{K} \\ & 0.30 \mathrm{~mol} & 0.10 \mathrm{~mol} & ? & 0.020 \mathrm{~mol} \\ \text { Conc in each liter of mixture }\end{array}$
$[\mathrm{CO}]=0.30 \mathrm{~mol} / 1$ liter $=0.30 \mathrm{M}$
What is the concentration of CH_{4} ?

$$
\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathrm{O}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]^{3}}=3.92=\frac{\left[\mathrm{CH}_{4}\right] *(0.020 \mathrm{M})}{(0.30 \mathrm{M}) *(0.10 \mathrm{M})^{3}}
$$

$\left[\mathbf{C H}_{4}\right]=3.92 * 0.30 *(0.10)^{3} / 0.020=\mathbf{0 . 0 5 9}$ moles $/ \mathbf{L} \quad$ Yea, \mathbf{I} know where did the units come from You need to recognize concentration and it's units!

Example 14.7 $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \quad \leftarrow \rightarrow \mathrm{CO}_{2}+\quad \mathrm{H}_{2} \quad$ in a 50.0 L reactor at $1000{ }^{\circ} \mathrm{C}$ $1.00 \mathrm{~mol} \quad 1.00 \mathrm{~mol} \quad ? \quad$? $\mathrm{Kc}=0.58$

Step 1: Setup to determine the equilibrium concentrations:

	$\mathrm{CO}+$	$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathrm{O}$	
Starting	0.0200	0.0200	$\mathrm{CO}_{2}+$	0
Change	-x	-x	+x	0
Equilibrium	$0.0200-\mathrm{x}$	$0.0200-\mathrm{x}$	x	+x
E				

Step 2: $\quad \mathrm{K}_{\mathrm{c}}=\frac{[\mathrm{CO}]\left[\mathrm{H}_{2}\right]}{[\mathrm{CO}]\left[\mathrm{H}_{2} \mathrm{O}\right]}=\frac{\mathrm{x} * \mathrm{x}}{(0.0200-\mathrm{x})(0.0200-\mathrm{x})}=\frac{\mathrm{x}^{2}}{(0.0200-\mathrm{x})^{2}}=0.58$
Take the square root of $0.58=+/-0.76=x /(0.0200-x) \quad$ rearrange:
$\mathrm{x}=+0.76 *(0.0200-\mathrm{x})=0.0152-0.76 \mathrm{x} \quad 1.76 \mathrm{x}=0.0152 \quad \mathrm{x}=0.0086$
$x=-0.76 *(0.0200-x)=0.0152+0.76 x \quad-0.24 x=0.0152 \quad x=-0.063$ which is impossible

	$\mathrm{CO}+$	$\mathrm{H}_{2} \mathrm{O} \leftarrow \rightarrow$	$\mathrm{CO}_{2}+$	$\mathrm{H}_{2} \mathrm{O}$
Equilibrium	$0.0200-\mathrm{x}$	$0.0200-\mathrm{x}$	x	x
Plug in answer	$0.0200-0.0086$	$0.0200-0.0086$	0.0086	0.0086

Example $14.8 \quad \mathrm{H}_{2}+\mathrm{I}_{2} \quad \leftarrow \rightarrow 2 \mathrm{HI} \quad 1.00 \mathrm{~L}$ reactor at $485^{\circ} \mathrm{C}$
Starting $\quad 1.00 \mathrm{~mol} \quad 2.00 \mathrm{~mol} \quad 0 \mathrm{~mol} \quad \mathrm{Kc}=49.7$
Change -x $-x \quad 2 x$

Equilibrium $\quad 1.00-\mathrm{x} \quad 2.00-\mathrm{x} \quad 2 \mathrm{x}$
$\mathrm{Kc}=\frac{[\mathrm{HI}]^{2}}{\left[\mathrm{H}_{2}\right]\left[\mathrm{I}_{2}\right]}=49.7=\frac{[2 \mathrm{x}]}{(1.00-\mathrm{x})(2.00-\mathrm{x})}$.
$(1.00-x)(2.00-x)=2 x / 49.7=0.0805 x^{2}$
$0.920 \mathrm{x}^{2}-3.00 \mathrm{x}+2.00=0 \quad \frac{-\mathrm{b}+/-[\mathrm{b} 2-4 \mathrm{ac}]^{1 / 2}}{2 \mathrm{a}}$
$x=2.33 \quad x=0.93$
Chem 1046 Ch 14 Chem Equilibrium

Plug in the values of x for the Equilibrium Concentrations
$\mathrm{x}=2.33 \quad \mathrm{H}_{2}=1.00-\mathrm{x}=-1.33 \quad$ Which is impossible
$\mathrm{x}=0.93 \quad \mathrm{H}_{2}=1.00-\mathrm{x}=0.07 \mathrm{~mol}$

Which is the answer

$\mathrm{I}_{2}=2.00-\mathrm{x}=1.07 \mathrm{~mol}$
$2 \mathrm{HI}=2 \mathrm{x}=1.86$ mole
Exercise 14.11
$\mathrm{PCl}_{5} \leftarrow \rightarrow \mathrm{PCl}_{3}+\mathrm{Cl}_{2}$ Initial $\mathrm{PCl}_{5}=1.00 \mathrm{~mol} / \mathrm{L} . \mathrm{Kc}=0.0211$ at $160{ }^{\circ} \mathrm{C}$. What is the equilibrium composition of the mixture

Changing the Reaction Conditions: La Chatelier's Principle

La Chatelier's Principle is when a system in chemical equilibrium is disturbed by a change of temperature, pressure or concentration, the system shifts in equilibrium composition in a way that tends to counteract this change of a variable.

Three ways to alter the equilibrium composition of a gaseous reaction:

1. Change the concentration by removing products or adding reactants to the reactor

| | $\mathrm{CO}+$ | $3 \mathrm{H}_{2} \leftarrow \rightarrow$ | $\mathrm{CH}_{4}+$ | $\mathrm{H}_{2} \mathrm{O}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |
| Start | 1.000 mol | 3.000 mol | | |
| Equilibrium | 0.613 mol | 1.839 mol | 0.387 mol | 0.387 mol |
| \quad So we remove the water: | | | | |
| Remove $\mathrm{H}_{2} \mathrm{O}$ | 0.613 mol | 1.839 mol | 0.387 mol | 0.0 mol reactor at $1200{ }^{\circ} \mathrm{K}$ |
| New Equilibrium | 0.491 mol | 1.473 mol | 0.509 mol | 0.122 mol |

Step 1: Determine Kc from the Equilibrium
Step 2: Determine the New Equilibrium Values
HOMEWORK ASSIGNMENT 4 NEXT CLASS
Adding a cheap reactant to force the reaction to products. $\mathrm{N}_{2}+3 \mathrm{H}_{2} \leftarrow \rightarrow \mathrm{NH}_{3}$ If the reaction is at equilibrium and you add more nitrogen, it will force the reaction to the right.

Example 14.9 Predict the direction of the reaction if hydrogen is removed from a mixture at equilibrium: $\mathrm{H}_{2}+\mathrm{I}_{2} \leftarrow \rightarrow 2 \mathrm{HI}$

Exercise 14.12 Predict the direction of the reaction

$$
\begin{array}{ll}
\mathrm{CaCO}_{3 \mathrm{~s}} \leftarrow \rightarrow \mathrm{CaO}+\mathrm{CO}_{2 \mathrm{~g}} & \text { Increase the pressure [concentration of } \mathrm{CO}_{2} \text {] } \\
2 \mathrm{Fe}_{\mathrm{s}}+3 \mathrm{H}_{2} \mathrm{O}_{\mathrm{g}} \leftarrow \rightarrow \mathrm{Fe}_{2} \mathrm{O}_{3 \mathrm{~s}}+3 \mathrm{H}_{2 \mathrm{~g}} & \text { Increase the concentration of } \mathrm{H} 2
\end{array}
$$

2. Change the partial pressure of the gaseous reactions and products by changing the volume

If the products in a gaseous reaction contain fewer moles of a gas then the reactants [it requires less space] then reducing the volume of the reactor would favor the products. If the number of moles of reactants = moles of products, there is no effect.

In a 10.0 L Reactor, $\mathrm{K}_{\mathrm{c}}=3.92$, at $1200{ }^{\circ} \mathrm{K}$

	$\mathbf{C O}+$	$\mathbf{3 ~ H}_{\mathbf{2}} \leftarrow \rightarrow$	$\mathbf{C H}_{\mathbf{4}}+$	$\mathbf{H}_{\mathbf{2}} \mathbf{O}$	
Start	1.000 mol	3.000 mol			$\mathrm{~K}_{\mathrm{c}}=$
Equilibrium	0.613 mol	1.839 mol	0.387 mol	0.387 mol	
$[\mathrm{CO}]\left[\mathrm{CH}_{4}\right]\left[\mathrm{H}_{2} \mathbf{O}\right]$					

If you half the volume of the gases, so the concentration has doubled, K_{c} and Temp are the same.
See example 14.8 to resolve for these new concentrations. The above concentration of CO started at 1.000 mol $/ 10.0 \mathrm{~L}$. Halfing the volume, the starting concentration of CO is now $1.000 \mathrm{~mol} / 5.0 \mathrm{~L}$. You need to recalculate the equilibrium concentrations to get:

$$
0.495 \mathrm{~mol} \quad 1.485 \mathrm{~mol} \quad 0.505 \mathrm{~mol} \quad 0.505 \mathrm{~mol}
$$

Note the amount of methane concentration has increased from 0.387 mol to 0.505 mol
Example 14.10 If the pressure is increased, what happens to the amount of products formed:

$$
\begin{array}{ll}
\mathrm{CO}_{\mathrm{g}}+\mathrm{Cl}_{2 \mathrm{~g}} \leftarrow \rightarrow \mathrm{COCl}_{2 \mathrm{~g}} & \text { Increase the amount of product } \\
2 \mathrm{H}_{2} \mathrm{~S}_{\mathrm{g}} \leftarrow \rightarrow 2 \mathrm{H}_{2 \mathrm{~g}}+\mathrm{S}_{2 \mathrm{~g}} & \text { Decrease the amount of product } \\
\mathrm{C}_{\text {graphite }}+\mathrm{S}_{2 \mathrm{~g}} \leftarrow \rightarrow \mathrm{CS}_{2 \mathrm{~g}} & \text { No effect as } \mathrm{C} \text { is a solid there is no change in volume. }
\end{array}
$$

Exercise 14.13

$$
\begin{array}{ll}
\mathrm{CO}_{2 \mathrm{~g}}+\mathrm{H}_{2 \mathrm{~g}} & \leftarrow \mathrm{CO}_{\mathrm{g}}+\mathrm{H}_{2} \mathrm{O}_{\mathrm{g}} \\
4 \mathrm{CuO}_{\mathrm{s}} & \leftarrow \rightarrow 2 \mathrm{Cu}_{2} \mathrm{O}_{\mathrm{s}}+\mathrm{O}_{2 \mathrm{~g}} \\
2 \mathrm{SO}_{2} \mathrm{O}_{2} & \leftarrow \rightarrow 2 \mathrm{SO}_{3}
\end{array}
$$

3. Change the temperature.

Reactions rates usually increase with an increase in temperature, so equilibrium is reached sooner.
But, equilibrium constants vary with temperature: Methanation:
$\mathrm{CO}+3 \mathrm{H}_{2} \leftarrow \rightarrow \mathrm{CH}_{4}+\mathrm{H}_{2} \mathrm{O} \quad \Delta \mathrm{H}^{\mathrm{o}}=-206.2 \mathrm{~kJ}=$ exothermic reaction
$\begin{array}{llll}\text { Temp } & \\ \mathbf{K}_{\mathbf{c}} \mathbf{K} & \frac{298}{4.9 \times 10^{27}} \quad \frac{800}{1.38} \times 10^{5} & \underline{1000} & 2.54 \times 10^{2}\end{array} \frac{\underline{1200}}{3.92}$
If you increase the temperature, you favor the reaction to the right, so the K_{c} will be smaller at higher temperatures.

Example 14.11 For the reaction $\mathrm{CO}_{2 \mathrm{~g}}+\mathrm{C}_{\text {graphite }} \leftarrow \rightarrow 2 \mathrm{CO}_{\mathrm{g}} \quad \Delta \mathrm{H}^{\mathrm{o}}=172.5 \mathrm{~kJ}$.
Does high or low temperature favor the formation of CO ?
Rewrite the equation to: Heat $+\mathrm{CO}_{2}+\mathrm{C} \leftarrow \rightarrow 2 \mathrm{CO}$
So when the temp is raised, for forward reaction if favored.
Example 14.14 For the reaction: $\mathrm{CO}_{2}+\mathrm{H}_{2} \leftarrow \rightarrow \mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \quad$ reaction is endothermic
Does high or low temp favor the production of CO?
Synthesis of Ammonia $\quad \mathrm{N}_{2}+3 \mathrm{H}_{2} \leftarrow \rightarrow 2 \mathrm{NH}_{3} \quad \Delta \mathrm{H}^{\mathrm{o}}=-91.8 \mathrm{~kJ}$

1. Reaction is exothermic, so formation of ammonia is favored by lower temp
2. Formation of ammonia decreases the volume, so higher pressure favors formation of ammonia
3. Removal of ammonia by condensation will also favor the forward reaction.

Exercise 14.15

$$
2 \mathrm{CO}_{2} \leftarrow \rightarrow 2 \mathrm{CO}+\mathrm{O}_{2} \quad \Delta \mathrm{H}^{\mathrm{o}}=566 \mathrm{~kJ}
$$

What are the effects of temp and pressure to form carbon monoxide?

Effects of a Catalyst

A catalyst is a substance that increases the rate of a reaction but is not consumed in the reaction.
A catalyst does not have an effect on the equilibrium constant of a reaction mixture

$$
2 \mathrm{SO}_{2}+\mathrm{O}_{2} \leftarrow \rightarrow 2 \mathrm{SO}_{3} \quad \mathrm{~K}_{\mathrm{c}}=1.7 \times 10^{26} \text { which says the reaction should go to completion }
$$

But without a catalyst, the reaction proceeds very slowly. With a cat, the rate of the reaction is very fast. This is used n the Contact Process for making sulfuric acid.

Nitric Acid can be made using this as a starting reaction: $\mathrm{N}_{2}+\mathrm{O}_{2} \leftarrow \rightarrow 2 \mathrm{NO}$
with $\mathrm{K}_{\mathrm{c}}=4.6 \times 10^{-31}$ What effect would adding a catalyst have to this reaction?

Ostwald Process to make Nitric Acid:

$$
\begin{array}{ll}
4 \mathrm{NH}_{3}+5 \mathrm{O}_{2} \leftarrow \rightarrow 4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} & \text { is slow, but } \\
2 \mathrm{NO} \leftarrow \rightarrow \mathrm{~N}_{2}+\mathrm{O}_{2} & \mathrm{~K}_{\mathrm{c}}=2.2 \times 10^{30} \text { at } 25^{\circ} \mathrm{C}
\end{array}
$$

But, Ostwald found out the $1^{\text {st }}$ reaction is catalyzed by Platinum.

